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SUMMARY 

The general problem considered is the restoring of a perturbed system 

to its equilibrium state with least expenditure of effort by the controlling 

elements, 

magnitude of effort expenditure does not depend explicitly on the state of the 

controlled sys tern, 

The measure of effort introduced encompasses cases ixa which the 

It is shown that minimum-effort control is in principle defined by a 

time-varying feedback processo 

examples involving a minimum-fuel criterion, and an example involving a 

quadratic measure of effort, In each case treated the minimum-effort control 

is obtained as a time-varying function of the instantaneous state of the system, 

Closed-form solutions are given for several 
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INTRODUCTION 

1 .  

Many present-day applications require that a system be capable of 

operating over extended periods with a limited supply of energy for control 

purposes, In such cases the efficient management of some exhaustible quantity 

such as fuel, electrical energye propellant, etc, , becomes a critical design 

problem, 

The purpose here is to investigate control strategies which require 

minimum efforto where effort is understood to represent some specific 

consumable quantity of interest, Since closed-loop or feedback control 

techniques are generally preferable to open-loop techniques, the aim will be 

to derive the optimal strategy in the form of a feedback control law, A solution 

in this form may enhance the possibility that an optimal strategy can actually 

be implemented. In cases where such an implementation is not feasible, the 

optimal strategy may even so provide valuable insight into ways of synthesizing 

a suitable sub-optimal control law. In any case, a knowledge of the optimal 

control strategy will define a definite lower bound on the effort required to 

accomplish a given task, and cano thereforeo provide a sound basis of comparison 

for other control strategies 

I. Formulation of the Problem 

The instantaneous state of a system will be described by an n-dimensional 

ector - x(t), A system of the type being considered is described by the lineare 

inary differential equation governing its response to  controlling inputs, 

- x(t) = A x ( t )  + B u(t) , U) 
e s( t )  is +&e r-di=.ensitx=l vector control function whose components are - 

subject to the amplitude coastraintie I ui(t)l 6 1, i = 1, 2, ., 
are constant axn and nxr matrices respectively, and the column vectors of B 

will be denoted by 4, i = 1, 2, 

ro A and B 

, , p0 The-state variablesg xi(t)# i = 1, 2, no 

. r 
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are chosen euch that they a re  continuous in time" even at discontinuities of 

u(t), It is assumed that all state variables a re  controlled by the vector u(t), - - 
The requirement that the control inputs ui(t) be limited in amplitude is 

a common one in practicee reflecting the limitations of practical hardware 

elementso These constraints can be briefly expressed by requiring that at 

any instante - u(t) a fin where ais a closed region byper-cube) in r-dimensional 

space, An additional requirement will be that - u(t) is a piecewise continuous 

function of time, Any piecewise continuous function - uQt) taking its values in Sl 

will be termed an admissible control, 

It is supposed that the system must be transferred from a known initial 

statee L x(to) = so to a definite final state, - x(tf) =xf, wherezf is assumed to 

be an equilibrium state of the uncontrolled system (i, e, 0 x 

There is no loss of generality in designating the final state aso zf = 0,  the origin 

of state space. Hencee the control - u(t) is required to influence the system (1) 

in a way which satisfies the boundary conditions, 

satisfies A = O), -f 

- 

- %(to) =zo D x(tf) = - 0 0 (2) 

An important aspect of the problem formulation given here is that the 

total time allowed for the transition 5 - 0  - is treated as a fixed parameter, 

Denote the total length of the transition interval [too tr] by TOP where 

To = tf - too Then, this amounts to fixing the final instant as tf = to + Too 

Of courseo the value chosen for To cannot be less than the minimum time 

required for the  transition^^^. 
there exists a minimum-time isochrone (hereafter termed the To-isochrone) 

Corresponding to a specific choice for To 

---*--:-- -1 -A-A-- ---L:-L --- L.. -ao~rrrarl 4 n  n 9- adm;o-thla e,.,mtw,,l 4m s timr 
G U L A U S U g  S A A  O W C C D  W W G U  L- UP ~ T O L W I T U  CW UJ Y-I~*YYII-Y "----v- -I - ----- 
interval of length Too 

To-isochrones or equivalentlye To must be chosen large enough to include_xo 

within the isochroneo 

The initial state x+, must therefpro lie inside the 



Under the assumption thatt xo lies inside the To-isochroneo there 

exist many admissible controls which accomplish the transition x-c- 0 in 

theallowed time Too The problem is to find one which is best according 

to a specific criterion. 

- 

It is supposed that, to every transition of the system from% to  0 ,  - 
there is associated a numbero denoted by Eo which represents the total effort 

expended by the control in effecting this transition, For the presentB the 

quantity E will be defined by an integral of the typep 

where Q 

with the 

(u) is a sufficiently smootha non-negative, scalar-valued function of u 

property, +(g) = 0. For a particular problem, E may represento for 

- - 

example, the total energy or fuel coaeumed by the control elements of the 

system, 

The problem considered here is the following: from among all control 

functions u(t) which cause the boundary conditions (2) to be satisfied, find one 

which yields the smallest value of E. Such a control function will be called an 

optimal control, 

Let E* denote the value imparted to the integral (3) by an optimal control. 

It is clear that this value will in general depend on the allowed time To as well 

as the initial state so 
show that, 

That is E* = E*(xoD To)" In fact, one can readily 

E* (xoe To + c ) E* boo To), for all 2 0.  (4) 

This means that, by increqsiag the time allowed for thp t rans i t ions+ - 0 ,  the 

optimal value of E may decreaseo but can never increa8e0 Inequality (4) also 
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explains why To must be regarded as a fixed parameter in this problem, 

With To left unspecifiedo (4) implies that a mioimization of E would not be 

possible in general. On the other handa fixing To does not restrict the 

generality of the results since the dependence of E" on To can be determined 

once the fixed-time problem is aolved. 

I I O  Procedure for Deriving the Optimal Control Logic 

The Pontryagin maximum principle (b] [ 21 8 [ 8 ]  ) will be used to 

derive a necessary condition for optimality of a control u(t), Corresponding 

to the problem described above, the Hamiltonian function can be written asu * 
- 

where pit) is an n-dimensional vector function satisfying the adjoint differential 

equation, 
- 

u 1&(t) = -At g(t) 0 (6)  

Since boundary conditions on p(t) are not specifiedo equation (6) does not define 
u 

a unique vector function. Let - u8 (t) be dp admissible control functiono and 

- x* (t) the resulting trajectory (solution of (1) ) emanating from 

to the maximum principle, if  - u* (t) is an optimal control, there exists a function 

g* (t) satisfying (6) such that for every instant t of the control interval 

[to, tf] 
Hamiltonian (5 )  with respect to all admissible controls, For the present 

problems this condition can be expressed asv 

According 

H &* (t)# E* (t)@ - u* (t) achieves the maximum value of the 

where (7)  must hold at every instant of the interval Ltoo tf 1 

rp 
The superscript t denotes the tranepose of a vector or matrix, 



Thusn if L us (t) is an optimal control, the maximum principle guarantees 

that 8 function E(t) exists such that, at any instant t e[ tog tf 1 e the value of 

u* (t) can be determined as that value of p(t) which maximizes the expression, 

The question of uniqueness arises here. That i e n  at a given instant 

there m a y  be more than one value of - u(t) which (corresponding to some vector 

g(t) ) achieves the maximum of P (#). u(t) ), Hence, for  this problem in 

general, an optimal control may not be unique. Howevere in specific cases 

where u* (t) uniquely achieves the maximum of P (n(t). u(t) ) for all t on 

Po. tf] 
# - 

E* (t) will be the unique optimal control, * 
It is convenient to define a particular functionpft) in terms of its value 

= n(tf) will be used, Thus, any solution at the instant tP where the notation 

of the adjoint equation (6) can be expressed as, 

wheree T = tf - to is the reverse-time measured from tr. 

be thought of as being the time-to-go, or time remaining before the final instant 

The variable T can 

is reached. With (9)# the function P defined by (8) can be expressed aso 

Any optimal control satisfies the maximum principle (7) with respect 

to some adjoint function z(t)B or equivalently, with respect to some vector 4 
Corresponding to a fixedpf, the control which satisfies the maximum principle 

is obtained from (10) as, 

* 
to prove uniqueness of minimum-time controls for linear sys emso 

This follows from an argument similar to one employed in \1J e secs 18, 



Hereafter it will be assumed that the matrix A and the fuqction +(u) are given 

such that (11) defines a unique vector u for any choice of the arguments 

Under this assumptiono ell optimal controls will be unique, For problems 

- 
T), - 

excluded by this assumptione the following arguments can be amended to include 

only those optimal controls which a re  unique, 

Since an optimal trajectory must intercept the origin - 0 at the final 

instant tfo the optimal trajectory corresponding to a control defined by (11) 

can be obtained by reverse-time integration of the system equations (1). The 

result of this integration is 

0 

For a particular choice of the arguments (gf. T)# (11) and (12) define 

two unique vectorao - u@ T) and E(Q T). Consider a fixed value of To say 

Tlg 0 T1 6 Toe representing a particular instant tl of the control intervalo 

where tl = tf - T1' Then to everypf there corresponds a - u(gf, T1) and an 

~ ( 2 ~ .  Tl),, via (11) and (121, representing possible instantaneous values of - u(tl) 

and - x(t,) for an optimal solution. Since all optimal controls a re  unique hereg 

to every such state - x(tl) there will correspond only one vector - u(tl), If all nf 
are taken into accounte then all possible optimal combinations of - x(t,) and - u(tl) 

will be established by (11) and (12). Under the assumption that all auch 

combinations can be tabulated, this means that, at the instant tlD the optimal 

instantaneous value of - u(tl) is dependent only on the instantaneous state - x(tl). 

Moreovere at an arbitrary instant t of the control intervalQ the optimal choice 

cf - .;(t) is depezde=t cdy  GEZ!~)  and T, the time-to-go at that instant, 

Define an (n + r + 1)-dimensional vector-valued function 
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where x denotes the Cartesian product. Then (13), with (11) and ( I t ) ,  defines 

a mapping from (n t 1)-space (occupied by nf x T) to an (a + 1)-dimensional 

surface in (n + t + 1)-6paC& Figure (1) gives a conceptual illustration of a 

cross-section of this surface corresponding to a particular instant tlo 

The intersection of the surface with the plane T = Tlo where T1 = tf - tlo 

is denoted by Z(T1). As indicated in Figure (I)# Z(T1) yields the optimal 

control logic at the instant tla That is, correspondiag to an instantaneous 

state x(t,), the instantaneous optimal control u(t,) is defined by the point - - 
- x(t,) x g t l )  x T1 lying on Z(T1) 

This means that, for problems of the type being consideredo an optimal 

control is in principle dethbable in the form, 

- u(tt) = ~ & ( t ) v  T) e (14) 

which implies a time-variablee or programmed, feedback control process 

such ae that illustrated in Figure (2), 

Datermining the optimal control logic for a particular problem may be 

a difficult task, and it may not be possible to obtain v(x(t), T) in closed form. 

The degree of difficulty is evidently dependent on the order of the systemo the 

characteristic roots of A, the number of control inputs, and the performance 

criterion, which means the form of +(u). - Once this logic is determined, howevero 

it will  encompass all minimum-effort transitions in the system, 

-- 

Several examples will  now be considered to illustrate how the optimal 

control logic (14) can be derived in specific caseso 

llI0 The Minimum Fuel Problem 

The so-called minimum fuel problem is characterized by the performance 

integral, 
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where, cf > 0, i = 1, 2, 

rockets or reaction-jets are ueed as controlling elements, 

the quantity E defined by (15) represents fuel or propellant consumption, 

, r., This problem arises, for example, when 

h such cases 

An optimal control is given in terms of some fixed vector Ef and the 

the-to-go variable, T, by relation (ll), Sinceo in this caseo $(u) is a sum 

of termso each of which depends on only one control variable, P (Efo TB 2) 

is maximized independently for each uie i = 1, 2, 0 ra There are two 

classes of problems to be considered here, 

class I.. 

- 

The characteristic roots of the system matrix A are all 

nopz;croo Relation (11) yields, for i = 1, 2, , o g  re 

At least one characteristic root of A is zeroo 

one or more vectors 

one value of the index io pr 
depends on the system (1) being controllableo and is readily 

For this case 

can be found such that for at least 
t - % =cia This assertion 

proved by straightforward meanso M'hen A has at least one 

zero characteristic rooto then for eome value of i the vector 

eAT b. will contain one element which is constant, An obvious 
I 

Application of (11) in such cases yielde, 



That is, for any To ui(lf, T) is allowed to satisfy either 

(a) or (b) of (17). For these values ofpr thereforeo the 

maximum principle does not prescribe a unique control 

function, 

For problems of Class L (16) defines a unique fuactionu(Efn T) for any 

choice of pf, and hence, all optimal controls are unique. 

discussions this means that any optimal control is in principle obtainable as 

From previous 

a time-variable function of the instantaneous state, Moreovero for this problem 

each component of an optimal control can be expressed as, 

ui(t) = vi( f(t)@ T) i = 1, 2, . ro (18) 

From (16)D each of these components cam assume only the values +le -1, or 0, 

and must therefore be piecewise constant ando in general, discontinuous with 

time. The task of determining the control logic - -  v( x(t)@ T ) therefore reduces 

to finding, for each control variable ui(t), i = 1, 2, . 
regions of state space corresponding to the three possible instantaneous values 

of ui(t). 

follow 

e ro those time-varying 

Two specific problems of Glass I are  discussed in the examples to 

Problems of Class I1 require a slightly modified treatment. A8 indicated 

by (17),, for some nf the maximum principle gives only an ambiguous specification 

%;nf0 -1 I--- uy 11 1 \ hiA..-,.,.; a . V U - - u - ~ ~ ~  nptimai controls of the type which arise in such 

cases have been termed singular controls in the literature. (b]) 
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Despite the occurrence of eiagular controls for problems of Class 11, 

one can aevertheless derive a control logic which always yields an optimal 

trajectory- By proceeding in the same manner as for problems of Class I, 

the logica E( r(t)o T yielding all unique solutions can be derived. And, in 

those time-varying regions of state space where the optimal value of a ui(t) 

is not uniqueD one can choose u.(t) = 0 ,  With this strategyp a trajectory starting 
1 

in a region of non-unique control must at some instant enter a region of unique 

control, 
2 The simple l/s plant provides an interestirrg example of a Class II 

problem having application in the attitude control of satellites, A solution of 

this problem in the form of (14) was first presented by Bo Friedland and 

H, Ladd in 131 

Example 1 

Let the system equations be given as,, 

t where - x(t) = ( x,(t), x2(t) ) describes the instantaneous state of the system, and 

u(t) is the scalar control function, 

obtained from the equatione 

The characteristic roots of the system are 

det [ A I -  A ]  = o e (20 1 

which yields for this case, A = *is Since there are no zero rootse this problem 

belongs to Class I, 

ylnamical behavior of the system can be depicted by motion of x(t) in the - 
Phase plane, as illuatrated in Figure (3). In forward time,, - x(t) follows a 

trajectory which proceeds ip a clockwise direction aboqt the instantaneous 

center-point, = ( uQlt),, 0 1% n On intervals where u(t) is constante the elapsed 



time between two points on the trajectory a rc  is equal to the angle subtended 

by radii drawn to those points, as indicated in Figure (3). A point on the 

trajectory corresponding to an instant at which a piecewise-constant u(t) changes 

value is called a switching point, 

The performance integral (15) becomes for this example,, 

tf 
E = I u(t) I dt , 

From {lb), any optimal control is given in terms of T and some vector Ef by 

the switching rule,, 

The aim here is to derive the control lawg u(t) = v( r(t). T), 

Consider an arbitrary instant tl of the control intervalo and denote the time-to-go 

at that instant by Tl. Let pf denote the plane in which the vector 

takes its value, Then, corresponding to the instant t l e  Pf can be partitioned 

into three mutually exclusive regionse R+(T,)@ R m (T,), and Ro(T1), which a re  

defined a s o  

= (pflp pfz)t 

R+(T1) : all 4 such that, 4 eATt - b h 1 

RJT1) a l l 4  such that, 4 t,ATib G-1 (23) 

Ro(Tl) : 

The division of Pf into these three regions is illustrated in Figure (4)a 

allEf such that, - l < ~ i  eATl - b < 1 

where the boundaries of R+(T1) and R 0 (TI) have been denoted by S+(Tl) and 

S_(T1)# respectively, With these definitionso and using (22)” u k f D  T1) is obtained 

for any nf by the following rule, 



12. 

(24) is interpreted as follows: The pf lying in R+(T1) correspond via (22) to 

all optimal controls which assume the value +1 at the instant tlo Similarlyo 

the zf in R (T1) and Ro(T1) correspond to all optimal controls which assume 

the values -1 and 0,  respectivelyn at tln 

instantaneous control lawe u(tl) = v( S(tl)# T1 ) P  it remains to establish a 

correspondence between points in Pf and points in the state space (phase plane),, 

which is denoted here by X, 

- 

* 

Thus0 in order to establish an 

The desired mapping from Pf to X is provided by 

(12)D which becomes for this caseo 
m 

Under the mapping defined by (25), let X+(T1)8 X II QT1) and Xo(T1) 

be the images of R+(T1)0 R (T1)# and RO(Tl)@ respectively. Also let 

L+(T1) and L 0 (TI) be the images of S+(T1) and S (Tl)@ respectively, Then, 

before proceeding wit& the details of this mappingo the results obtained so far 

can be summarized as follows: 

At an arbitrary instant tl of the control interval, where,, tl = tf - Tln 

the instantaneous value of an optimal control is given in terms of the 

instantaneous state, x(t1)@ by the ruleo - 
l e  if z(tl) a X+(T1) 

00 i i z j t l j  X jT j 0 1  
I- 
1 

..I& 1 = 
U \ b I I  (26 j 
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For the present problem it is sufficient to establish only the images 

of S+(T1) and S - (Tl)e It follows from (22) that L+(Tl) is the locus of all 

possible states at which an optimal control can switch between the values 0 and 

+1 at the instant tlo Similarly,, L - (TI) gives all states at which a switching 

between the values 0 and -1 can occuro It also follows from (22) and (25) that 

L 0 (T1) is the reflection of L+(T1) about the origin of Xo Thusp Onry L+(T1) 

need actually be constructed hereo 

Let Tl be decomposed asD 

T1 =kr+ ,, 

whereo k is a positive integer ce zeroB and 

0 

yields a control function .(Efn T) which can take either of the f o m s  (a) O r  (b) 

shown in Figure (5) ,  Note that the intervals on which a particular u(gfe T) is 

nonzero are all of equal length A# 0 S A  

For any sushpf a state vector - ~ ( 2 ~ ~  TI) is established from (25) by means of 

an elementary calculation. With A as a parameter, and taking allpi on 

S+(T1) into account,, the results of these calculations can be tabulated as follows: 

is a number in the rangeu 

6 ( w o  Corresponding to any pointpf lying on S+(T1)B the switching ru le  (22) 

ll4l O 

where A depends only on 

(a) U(t l  4- 0 )  = 1 

. 



k t cos 5 t (k t 1) cos A) 

(sin 6 - (k+ 1) sin A )  
,, f o r v  - 5 2 A S r  

Given a specific value for T1# and therefore definite values for k and s o  
(28) defines Ls(T1) as a locus of points in the phase planes with A being a 

parameter along the locus, 

FOP the sake of definitenesso let T1 = 3a/2, Then k = 1 and 6 = w / L  

With these valuesp (28) describes L+(T1) as illustrated in Figure (6).  Also 

shown aree L - (T,)# which is obtained by symmetrye the T1-isochrone, andB for 

comparison purposeso the well-known B u s h w  curveo which givee the minimum- 

time switching locus for this problemo* 

forms two closed curves which become the optimal switching-locus for the 

The union of L+(Tl) and L 0 (T1) 

instant tle That iso an optimal control changes value at tl if and oaly if 

- x(tl) lies on this locus, 

The region enclosed by the switching locus is evidently Xo(T1)" Also, 

X+(T2) and X 0 (T1) are the regions bounded by the Tl-isochrone and L,(T1) 

and L [T& respectively. 

the instantaneous coatrol law, u[tl) = v(r(tl)* Tl)o for T1 = 3n/2, For any 

state - x(tl) lying inside the Tl-isoehrone, the unique optimal value of u(tl) is 

prescribed according to the rule ( 2 6 ) o  

Tl-isochrone cannot be restozed to  &&e 

there is no solution in such caseso 

Figure ( 6 )  is therefore a graphical presentation of 

Any state - x(tl) lying outside the 

at the f i n a l  instant tgQ and hence 
A 

y g  * 
See 11 for a discussio$ of the minimum-time solution and a derivation of 
the s ushaw c c T e o  titails for the construction of binimum-time isochrones 
are given in 5 and 8 



15 0 

Similarly, for any instant the optimal value of u(t) is determined by 

the location of - x ( t )  relative to the time-varying regionsp X+(T), X .D (TIn and 

Xo(T). Sinec sup optimal control is piecewise constant, it is sufficient to 

determine only the instants at w€kh the system trajectory crosses the time- 

varying switching curveo It is deduced from (28) that, with T = kw + s 
optimal switching-curve is constructed as shown 18 Figure (7). Since the 

curve is symmetrical about O,, only the portion in the left half-plane is shown, 

the 

As an optimal trajectory proceeds toward its eventual interception 

with 9 at the final instant, the optimal switching-curve continually contracts 

and finallyn at tfB it shrinks t o  the single point - 0,  

the switching curve propogates with To 

ikampie 2 

Figure (8)  illustrates how 

In example 1 the minimum-fuel control logic was derived for a single 

input to a second-order plant. 

general procedureo With somewhat more lengthy calculations, leads to the 

minimum-fuel logic for each control variable, The object here will be merely 

to exhibit the solution of a two-input problem, A more detailed treatment can 

be found in l57 

If two control inputa are involveda the same 

For this case the system is described byo 

where - u(t) = Qu,(t)# u,(t) )' is the two-dimensional, vector control function, 

The performance integral (15)will be taken as8 
L 



This is again a Class I problem, Any optimal control is therefore 

describable asp 

From (16) the optimal control 

Optimal phase-plane trajectories are 

variables are always piecewise 

therefore composed of circular 

which move about the instantaneous center-pointo xc = ( - ~ ~ ( t ) ~  u,(t) - 

(31) 

constant. 

arcs 

It. 

By proceeding in the manner outlined in example 1, each control 

variable can be represented by a function of the inetantaneous state and time-to-go, 

Figure (9)  illustrates the optimal logic for ul(t) for the particular instant 

T = 5n/4. 

time isochrone, there is a unique optimal value of ul(t). Also shown in 

Figure (9 )  is the minimum-time switching locus ([l])o This curve has no 

bearing on the minimum-fuel control logic and i a  shown here only for comparisono 

Details for the construction of minimum-time isochrones (where the effects of 

both control variables must be included) are given in [510 

Corresponding to zny state - x(t) which lies inside or on the minimum- 

A s  time-to-go decreases toward zeroo the various regions indicated in 

Figurt(9:i contract, The time-varying boundary enclosing states for which 

u1 = 0 is the minimum-fuel switching curve for ul(t), A similar resul t  is 

obtained for u2(t). 

is illustrated in Figure (10) for the instant, T = 3 ~ t / 2 o  

within the isochroneo each of which corresponds to a particular value of 

- u = (ulg u2) As T decreases, thebe regions contractr and at any instant 

prescribe the optimal control vector g(t) as a function of the instantaneous 

state z{t)o 

The composite optimal control logic for both ul(t) and u,(t) 

There are nine regions 

t 



IV. A Quadratic Effort Criterion 

Consider next a class of problems for which control effort is defined 

by an integral of the type,, 

where ci> 0, i = 1, 2, b o m  r .  

For such problems it is found from (11) that the components of an 

optimal control a re  given,, for i = 1, 2, r, byD 

Since (33) defines a unique vector 5 for every choice of the arguments 

any optimal control is unique for this problem, Hencee any optimal control 

T)o 

can in principle be obtained via a programmed-feedback control law in the form 

of (l8), 

Note thato unlike the minimum-fuel case,, the optimal control variables 

with criterion 432) are  allowed to aseume nonzero values which are less in 

magnitude than unity. Since 433) does not allow ui = O  on any intervale periods 

of "coasting' cannot occur for this problem. 

Example 3 

Consider a system described by the equationB 

(34 j 
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with a quadratic effort index defined byL 

For this ca8e (33) yields, 

Let T1 be the time-to-go at some instant tlL to tl tfe If all possible 

choices of 4 = (pflo pfz) are considered, (36) defines all functions of T which 

are of the three types illustrated in Figure (l l) ,  

at tlP and become unsaturated at a subsequent instant of the control interval 

They may or  may not eaturde again at the opposite limitq 

unsaturated on the entire control interval. 

tl,, but become saturated before the final instant is reached, 

Functions of type I are saturated 

Type 111 functions are 

Type II functions a re  unsaturated at 

Reverse-time integration of the system equations is accomplished by 

(121, which becomes for this problem, 

where T denotes an arbitrary value of time- to-go, 

of type I establish all states x(t1 lying in the regions labeled I in Figure (12)- 

These regions vary with T and yield all states corresponding to optimal controls 

which are instantaneously saturated, Similarlys controls of types II and III 

By means of (37) ,  controls 

- 

establish all states lying in regions Hand In, respectively, in Figure (12), 
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The outer boundary in Figure (12) is the.T-isochrone, As T decreaaeso 

this boundary contracts, and at any instant defines the region of all states which 

can be restored to 2 at the final instant by an admissible control function. Far 

any state lying within this contracting isochrone there is a unique optimal value 

for u(t). It is not difficult to show that, with regions Io 11, and III defined as in 

Figure (121, the optimal control logic for this problem is given by the following 

relations 

Region I: u(t) = *1 

Region Ik 

6 4 Region III: uQt) = - - 2 x1 - T x2 T 

It is interesting to consider how a trajectory in Region 111 approashes 
t t the final point (xlo x2) = (0, 0) 

the integration (37) giveso 

With "[Efo T) given by (36) ( lul 4 1 in Region III), 

T2 T3 
x1 = Pf2 2 4- Pfl -6 

(39) 

As an example $uppose pfl and pf2 are different from zeroo 

and providing that (2;)  - T<<lta (39) yields J 

For T very small, 

T2 xZ -p T 0 x1 2! Pf2 2 0 f2  



which means that in this case the final portion of the trajectory approaches 

the parabola, 
2 

The case pf2 = 0 is also interesting, For this case one obtains from (39), 



CONCLUSION 

In the regulation of stationary linear systems. the control strategy 

which achieves the minimum expenditure of control effort has been identified 

ao a time-varying feedback processo The optimal control inputs were found to 

depend only on the instantaneous state of the controlled system, and the 

instantaneous time-to-go, 

may be a difficult task, depending on the complexity of the systemo and a 

closed-form solution is not guaranteed. The general procedure for deriving 

the control logic has been outlined, and was used to obtain closed-form solutions 

for several examples. 

Derivation of the control logic in a specific case 

The so-called minimum-fuel problem was discussed and the optimal 

control law derived in the specific case of a second-order plant with one control 

inputo The solution for the problem wi th  two inputs was exhibited. In both cases 

the minimum-fuel control logic is described by time-varying switching curves 

in the phase plane, 

briefly discussed and the optimal control law was obtained for a specific 

second-order example. 

Problems involving a quadratic measure of effort were 

Strictly speaking, since the optimal feedback processes described here 

require an external time reference in order to determine time-to-go, they do 

not yield true closed-loop control, 

eystemn the optimal strategy gives strictly a closed-loop control which is 

incidentally capable of handling small unexpected disturbances, 

Howevero for a single transition of the 
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The optimal control logic for an instant when timeoto-go is, 

T =: 3a/2, 

Construction of the optimal switching-curve for arbitrary time-to-go, 

where T = k.w 4- t o  
Propagation of the optimal switching-curve with time-to-go, 

hstantaneoue logie for determining ul{t) in the two-input 

ease; T = 51r/4, 
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Fig. 11 - Possible forms of an optimal control function for the quadratic 
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FigO 12 = The time-varying optimal control law, u = v(xQ a), for the quadratic 
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